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Abstract

The use of cardiac computed tomography angiography (CCTA) has dramatically increased
over the past decade, with an increasingly recognized role for functional assessment; how-
ever, reformatting these datasets into standard cardiac planes and performing quantitative
analysis remains time consuming and disruptive to clinical workflows. Here, we propose
a fully automated, volumetric, end-to-end trained network for simultaneous detection of
standard cardiac planes and comprehensive left ventricular (LV) segmentation in the pre-
dicted short axis coordinate system. The architecture consists of a coarse segmentation
module, a transformation module, and a fine segmentation module. The coarse segmenta-
tion module provides an initial segmentation of the full field of view (FOV) axial images
at low resolution. The transformation module predicts the rotations corresponding to the
standard cardiac planes (short axis, SAX; two chamber, 2CH; three chamber, 3CH; and
four chamber, 4CH) and reformats the source volume into the predicted SAX coordinate
system at high resolution. Finally, the fine segmentation module segments the narrow FOV,
high resolution SAX volume. The dataset consisted of 313 CCTA studies partitioned into
training, validation, and testing in an 80:10:10 split. Architectural decisions are justified
using ablation experiments. On the test set, the proposed architecture achieved accurate
plane predictions (mean angle errors of 9.1± 6.2◦, 9.5± 5.4◦, 9.0± 5.9◦, and 8.8± 5.9◦ for
the SAX, 2CH, 3CH, and 4CH planes, respectively) and high quality segmentations (Dice
scores of 0.955 ± 0.008, 0.928 ± 0.016, and 0.808 ± 0.029 for the bloodpool, myocardium,
and trabeculations, respectively). This fully automated pipeline has the potential to re-
place current manual workflows, expediting the availability of standard cardiac planes and
quantitative analysis for clinical interpretation.
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1. Introduction

The use of cardiac computed tomography angiography (CCTA) in the United States in-
creased 85% over the previous decade (Reeves et al., 2021), with outpatient, inpatient, and
emergency department exams all more than doubling in frequency. This trend is likely to
continue or accelerate owing to the increasing availability of scanners capable of perform-
ing high quality cardiac exams, incorporation of coronary CT angiography as a Class I
recommendation in the AHA/ACC clinical practice guidelines on the evaluation of chest
pain (Gulati et al., 2021), and doubling of reimbursement by Medicare in the United States
starting in 2025 (Maxwell, 2024). Moreover, there is an increasingly recognized role of
retrospectively ECG-gated cine acquisitions for functional assessment (Peper et al., 2020),
with incremental value over coronary CTA alone (Seneviratne et al., 2010). Reformatting
these images into standard cardiac planes is critical for standardized comparison between
exams, wall thickness measurements, and myocardial segment classification; however, this
processing is time consuming and usually requires a third party software package outside
the standard clinical PACS system.

The literature on medical image segmentation is extensive, with deep neural networks
yielding excellent performance over the past decade. Ronneberger et al. (2015) first intro-
duced the U-Net, a highly successful 2D encoder-decoder architecture with skip connections.
Since then, a plethora of modifications to the U-Net have been proposed. Residual, recur-
rent, and residual-recurrent versions have been described (He et al., 2016; Milletari et al.,
2016; Alom et al., 2019). Oktay et al. (2018) added attention gates, using saliency maps
to preserve only relevant activations. Additional connections within (Huang et al., 2017;
Jegou et al., 2017) or between (Zhou et al., 2020) the network layers have been added to
enhance information flow. Multiple U-Nets have been combined into “cascaded” networks,
which in their simplest form provide the predictions of one U-Net module as an input to a
second U-Net module (Liu et al., 2021), while more sophisticated implementations densely
connect the network layers of successive U-Net modules (Wu et al., 2023). Most recently,
more sophisticated approaches using transformers (Chen et al., 2021a; Cao et al., 2021) and
graph neural networks (Kong et al., 2021) have also been proposed. Many of these concepts
have been applied to CCTA segmentation (Bruns et al., 2020; Li et al., 2021; Jun Guo et al.,
2020; Wang et al., 2022; Kong et al., 2021).

Combined segmentation and detection of standard cardiac planes from CCTA has re-
ceived much less attention. The most closely related work (Chen et al., 2021b) describes a
method to predict SAX, 2CH, 3CH, and 4CH planes by branching a fully connected net-
work from a U-Net bottleneck; however, several architectural and training decisions deserve
further exploration. (a) Separate models are trained to predict each cardiac plane, multi-
plying training time, but without comparing to a single unified model. (b) Their network
is trained using a multi-stage approach, but without comparing to end-to-end training. (c)
Regarding the fully connected network branched from the bottleneck, no experiments are
reported exploring the effect of hidden layers (either their presence, number, or width) on
performance. (d) Promising modifications to the U-Net such as attention gates and residual
blocks are not explored. (e) Having learned the transformation parameters, it is reasonable
to question whether performance could be improved by segmenting the reformatted images
in a second stage; however, this was not investigated.
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Therefore, the purpose of this study was to develop a fully automated, volumetric, end-
to-end trained network for simultaneous detection of the standard cardiac planes (SAX,
2CH, 3CH, and 4CH) and comprehensive left ventricular (LV) segmentation (bloodpool,
myocardium, and trabeculations) in the predicted SAX coordinate system.

2. Methods

2.1. Dataset

The dataset consisted of 313 CCTA studies randomly partitioned into training, validation,
and testing in an approximately 80:10:10 split (250 training, 30 validation, and 33 test-
ing). Cases were obtained as part of routine clinical practice and were retrospectively
collected with IRB approval. Final clinical diagnoses were normal (N = 89), hypertrophic
cardiomyopathy (N = 106), LV non-compaction (N = 46), and dilated cardiomyopathy
(N = 72). Acquisitions were retrospectively ECG-gated and reconstructed at mid-diastole.
Studies were obtained from one of four scanners: SOMATOM Force (Siemens Healthi-
neers; N = 275), SOMATOM Definition Flash (Siemens Healthineers; N = 36), Light-
speed VCT (General Electric Healthcare; N=1), or Sensation 64 (Siemens Healthineers;
N = 1). Slice thicknesses were 0.75 mm for Siemens and 0.625 mm for GE scans. The
median reconstructed field of view (FOV) diameter was 190.0 mm (interquartile range:
173.0–209.0 mm), with a median in-plane pixel spacing of 0.37 mm (interquartile range:
0.34–0.41 mm). Initial myocardial and bloodpool segmentations were obtained using a pre-
viously described network (Kong et al., 2021) and trabeculations were separated from the
bloodpool by thresholding. These initial segmentations were manually corrected (AM, AH,
and KW) using ITK-Snap version 3.8.0, (Yushkevich et al., 2019). Standard cardiac planes
were defined by a cardiologist with fellowship training in cardiac imaging and 10 years of
experience (TG).

2.2. Proposed Architecture

The proposed network architecture (Figure 1) consists of three end-to-end-trained modules:
(a) a coarse segmentation module, which segments a large FOV, low resolution image, (b) a
transformation module, which predicts the rotations corresponding to the standard cardiac
planes, and (c) a fine segmentation module, which segments a narrow FOV, high resolution
image reformatted in the SAX coordinate system. Additionally, the two segmentation
modules are cascaded by resampling the coarse segmentation logits and providing these as
additional channels to the input of the fine segmentation module.

2.2.1. Coarse Segmentation Module

The coarse segmentation module takes as input the axial CCTA volume downsampled to
3.0 mm isotropic with a 64×64×64 matrix size and produces as output an equivalently sized
multi-class segmentation (bloodpool, myocardium, and trabeculations). The architecture
used is a volumetric attention residual U-Net with 4 downsampling/upsampling steps. The
number of features produced by each convolution block is 32 in the highest resolution
stage and is doubled at each downsampling step and halved at each upsampling step. The
fundamental processing block is made up of a 3 × 3 × 3 convolution, group normalization
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Figure 1: Proposed Network Architecture, consisting of a coarse segmentation module, a
transformation module, and a fine segmentation module, trained end-to-end.

layer (Wu and He, 2018), and leaky rectified linear unit (ReLU) activation, applied twice
at each stage. This is optionally converted to a residual block by element-wise addition
of the input and the result of the last normalization layer, prior to applying the final
activation; in practice, convolution and normalization layers are applied within the residual
connection to match the feature lengths prior to summing. Traditional skip connections
concatenate feature vectors from matching resolutions in the downsampling and upsampling
paths. These can be converted to attention gates by first multiplying the downsampling
path input by a multi-class saliency map learned from the downsampling and upsampling
path inputs (Oktay et al., 2018). The result is passed into a final convolution to produce
the raw logits corresponding to the background and foreground classes.

2.2.2. Transformation Module

The transformation module is responsible for learning the rotations corresponding to the
standard cardiac planes, calculating the LV centroid, and resampling the input image and
the coarse segmentation logits into the learned SAX coordinate system (to be passed as
input to the fine segmentation module). The SAX plane is chosen for the second segmen-
tation stage because, unlike the long axis planes, the SAX plane is routinely reviewed as
a stack from base to apex and maps directly onto the bullseye plots commonly used to
display downstream analyses such as wall thickness, wall thickening, and segmental strain
(Chen et al., 2023). The predicted rotations are represented as quaternions, a compact
representation widely used in the graphics community due to several favorable mathemat-
ical properties. A matrix of quaternions is predicted as the output of one or more fully
connected layers branched from the bottleneck of the coarse segmentation module. Note,
however, that the rotations describing the standard cardiac planes (QSAX, Q2CH, etc.) are
the composite of (a) a shared baseline rotation (QBLN) orienting the long axis of the LV
perpendicular to the plane of the image and (b) an additional rotation specific to each plane
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(Q∆SAX, Q∆2CH, etc.). Therefore, rather than predicting the final rotations directly, the
network is trained to predict the matrix of baseline rotation and the additional rotational
offsets [QBLN, Q∆SAX, Q∆2CH, Q∆3CH, Q∆4CH]. The LV centroid is estimated directly from
the coarse segmentation prediction probabilities. Using the SAX rotation quaternion and
LV centroid, the axial input image and coarse segmentation logits are resampled into the
SAX coordinate system at 0.8 mm isotropic with a 128× 128× 192 matrix size.

2.2.3. Fine Segmentation Module

The axial input image (and coarse segmentation logits when cascading is employed) are
resampled into the SAX coordinate system at 0.8 mm isotropic with a 128×128×192 matrix
size and provided as input to the fine segmentation module. Like the coarse segmentation
module, the fine segmentation module is a volumetric attention residual U-Net, starting
with 40 features in the highest resolution stage, but otherwise identical to the former.

2.3. Network Implementation and Training

2.3.1. Preprocessing and Augmentation

The training dataset was augmented at runtime by applying random rotations (100%
probability, ±45◦ along each axis) and adding random Gaussian noise (50% probability,
σ ∈ [0, 100] HU). Note that variation in the predicted centroid and SAX quaternion conse-
quently varies the volume provided to the fine segmentation module, resulting in additional
implicit augmentation. Following augmentation, input images were clipped to the range
[−200, 600] Hounsfield units (“vascular windows”) and normalized to the range [0, 1].

2.3.2. Network Training

The coarse and fine segmentation modules are supervised using mean Jaccard loss across
all classes (Lc and Lf , respectively). For the transformation module, we provide both
direct supervision of the predicted quaternions [QBLN, Q∆SAX, Q∆2CH, Q∆3CH, Q∆4CH] and
indirect supervision of the composite quaternions [QSAX, Q2CH, Q3CH, Q4CH]. The loss Lq

is the sum of the mean squared errors between the ground truth and predicted quaternions
for both direct and indirect rotations, which is mathematically closely related to the angle
between the rotations they represent. The total network loss Lt is then given as a weighted
sum of these losses:

Lt = αcLc + αqLq + αfLf (1)

We set αc = αf = 1 and αq = 10/nq where nq is the total number of quaternions being
supervised. Additional training and implementation details are given in Appendix A.

3. Experiments and Results

Results of the hyperparameter search and ablation experiments are presented in Table 1
(angle errors) and Table 2 (centroid errors and Dice scores). Regarding the transformation
module, the depth and width of the hidden layers branched from the coarse segmentation
module bottleneck were varied. Among these, the version with two 128-feature hidden layers
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(abbreviated “128-128”) performed best in terms of centroid error (0.805±0.521mm), angle
error for three of the four standard cardiac planes (9.1±6.2◦ SAX, 9.0±5.9◦ 3CH, and 8.8±
5.9◦ 4CH), and angle error for the baseline rotation QBLN (6.6± 3.7◦). For the 2CH plane,
the angle error was similar between the 128-128 and best performing networks. Regarding
segmentation performance, the 128-128 network performed slightly worse compared to the
best performing network in terms of myocardial Dice (0.928±0.016 vs 0.930±0.016, p < 0.05)
and trabeculation Dice (0.808 ± 0.029 vs 0.814 ± 0.030, p < 0.05). Bloodpool Dice was
similar between the 128-128 and best performing networks. Because the 128-128 network
performed best overall in predicting the standard cardiac planes and differences in Dice score
compared to the best performing networks were small, the 128-128 network was selected as
the baseline for subsequent ablation experiments; representative segmentations and plane
predictions are shown in Figure 2.

Ablation experiments were performed to explore the value of attention gates, residual
blocks, cascading, indirect and direct rotation supervision, end-to-end training, the fine
segmentation module, multiple vs single plane predictions, and hidden layers in the trans-
formation module. Metrics which demonstrated a statistically significant change compared
to the proposed network by paired Student’s t-test (α = 0.05) are reported below. Re-
moving the attention gates degraded performance in terms of centroid error but improved
trabeculation Dice (0.813± 0.029 versus 0.808± 0.029, p < 0.05). Removing residual blocks
degraded performance for bloodpool Dice. Removing cascading (that is, providing only
the resampled input image without the coarse segmentation logits to the fine segmenta-
tion module) degraded performance in terms of the baseline rotation QBLN but improved
trabeculation Dice (0.817 ± 0.029 versus 0.808 ± 0.029, p < 0.05). Removing indirect su-
pervision of the quaternion rotations degraded performance in terms of the angle errors for
all standard cardiac planes and for myocardial Dice. Removing direct supervision of the
quaternion rotations degraded performance in terms of the baseline rotation QBLN.

To test the effect of end-to-end training, we sequentially trained the coarse segmentation,
transformation, and fine segmentation modules (8 epochs each, 24 epochs total), resulting
in degraded performance for all metrics. To test the utility of our two-stage segmentation
approach, we removed the fine segmentation module, instead inputting the full field of view,
high-resolution images to the first segmentation stage (requiring a reduction in the number
of features in the first stage U-Net by a factor of 4 due to GPU memory constraints). Doing
so degraded performance in terms of the 3CH and 4CH angle errors, but improved bloodpool
Dice (0.958 ± 0.008 vs 0.955 ± 0.008, p < 0.05) and trabeculation Dice (0.834 ± 0.029 vs
0.808 ± 0.029, p < 0.05). To test the utility of predicting all standard cardiac planes in a
single network, we trained four separate networks, each predicting a single cardiac plane,
following the approach taken by Chen et al. (2021b). Note that the input image and coarse
segmentation logits were resampled into whichever clinical plane was predicted, as the SAX
rotation was not always available. The SAX-, 2CH-, and 4CH-only networks all exhibited
degraded performance in terms of bloodpool and trabeculation Dice. The 3CH-only network
was not significantly different in terms of any metric. Finally, removing all hidden layers
from the transformation module degraded performance in terms of angle errors for the
baseline rotationQBLN, SAX, 2CH, and 3CH planes, and additionally degraded performance
in terms of bloodpool Dice.
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4. Discussion and Conclusions

Here, we present a fully automated, volumetric, end-to-end trained network for simultaneous
detection of standard cardiac planes (SAX, 2CH, 3CH, and 4CH) and comprehensive LV
segmentation (bloodpool, myocardium, and trabeculations) in the predicted SAX coordinate
system. The network had high performance in terms of standard cardiac plane detection,
with sub-millimeter centroid error and angle error < 10◦ for all standard cardiac planes.
The Dice scores achieved by our network are also high (0.955 ± 0.008, 0.928 ± 0.016, and
0.808 ± 0.029 for the bloodpool, myocardium, and trabeculations, respectively), which is
notable given the separate segmentation of the LV trabeculations, a high surface-area-
to-volume structure. Note that segmentation of the LV trabeculations has value in the
investigation of diagnoses such as LV non-compaction cardiomyopathy (Manohar et al.,
2023) but is not typically included as a separate label in segmentation models.

Several key points may be gleaned from our ablation experiments. First, end-to-end
training resulted in significantly improved performance for all metrics compared to training
each module separately for a fixed total number of epochs. Second, training separate models
to predict each cardiac plain individually–the approach taken in Chen et al. (2021b)–failed
to significantly improve angle errors, in spite of quadrupling the total training time re-
quired compared to our single unified model. Third, providing direct supervision of the
quaternions, while not significantly changing the final composite rotations or segmentation
performance, was necessary to provide accurate intermediate rotations, which are useful
in the event that the predicted planes require manual correction. Fourth, we found that
the number and width of hidden layers in the transformation module was an important
hyperparameter with significant impact on network performance.

This work has several limitations and areas for future improvement and validation. First,
it would be useful to quantify intra- and inter-observer variability in standard cardiac plane
angles in order to contextualize the angle errors observed in our network. Second, several
potential improvements to the segmentation modules, particularly the use of transformer-
based modules, have the potential to improve segmentation performance and should be
investigated. Third, whereas our intention in adding cascading (passing features from the
coarse segmentation module to the fine segmentation module) was to improve segmentation
performance, removing cascading instead resulted in significantly higher angle error for the
baseline rotation and slightly higher trabeculation Dice; this paradoxical result is not fully
explained by our experiments and is deserving of further investigation. Fourth, remov-
ing the fine segmentation module degrades 3CH and 4CH cardiac plane prediction while
very slightly improving bloodpool and trabeculation Dice; these somewhat counterintuitive
results also deserve further investigation. Fifth, the dataset was obtained retrospectively
from a single center; proposed network should undergo further validation in prospectively
obtained, multicenter images. Last, although we explore through ablation experiments
many of the features which distinguish our network from the most closely related work
Chen et al. (2021b), a direct head-to-head comparison would be valuable.

This fully automated pipeline has the potential to replace current manual workflows,
expediting the availability of standard cardiac planes and quantitative analysis for interpre-
tation.
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(a) Ground Truth (b) Prediction

Figure 2: Representative ground truth (left) and predicted (right) segmentations and stan-
dard cardiac planes for a patient in the testing partition. In each case, the SAX
stack is shown in rows 1-4 (sliced from base to apex) and the long axis reforma-
tions are shown in row 5 (2CH, 3CH, and 4CH from left to right).
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Appendix A. Implementation Details

The network was trained end-to-end with a batch size of 1 for 24 epochs using the Adam
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10−4, achieved using a linear ramp over 3 epochs. After the third epoch, the learning rate
was exponentially decayed with a multiplicative factor of 0.9.

The network was implemented in python (version 3.12.6) using Monai (version 1.5) and
PyTorch (version 2.5.1+cu124). Conversion between quaternion and matrix rotation repre-
sentations was performed using RoMa (version 1.5.0). Experiments were run on an Ubuntu
workstation (version 24.04) with a 16 core Intel i7-13700K processor, 64 GB RAM, and a
single NVIDIA GeForce RTX 4090 GPU with 24 GB memory. Please see the repository for
additional details.1
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