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ABSTRACT 
We present an analytical LV systolic model derived from human CT data to serve as the ground truth for optimization 

and validation of a previously published CT-derived regional strain metric called SQUEEZ. 

 

Physiologically-accurate strains were applied to each vertex of a clinically derived end-diastolic LV mesh to create 

analytical end-systolic poses exhibiting normal function as well as regional hypokinesia of four sizes (17.5mm, 14mm, 

10.5mm, and 7mm in diameter), each with a programmed severe, medium, and subtle dysfunction. Regional strain 

estimates were obtained by registering the end-diastolic mesh to each end-systolic mesh condition using a non-rigid 

registration algorithm. Ground-truth models of normal function and of severe hypokinesia were used to identify the 

optimal parameters in the registration algorithm, and to measure the accuracy of detecting regional dysfunction of 

varying sizes and severities. 

 

We found that for normal LV systolic contraction, SQUEEZ values in all 16 AHA segments of the LV were accurately 

measured (within 0.05). For cases with regional dysfunction, the errors in SQUEEZ in the region around the 

dysfunction increased with decreasing size of regional dysfunction. The mean SQUEEZ values of the 17.5mm and 

14mm diameter dysfunctional regions, which we hypothesize are the most clinically relevant, were accurate to within 

0.05. 
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1. INTRODUCTION 
 

The assessment of regional cardiac function has implications in the diagnosis, treatment, and follow up of patients with 

cardiac diseases such as myocardial ischemia1,2, heart failure3, cardiotoxicity4, and dyssynchrony5,6. Left-ventricular 

(LV) ejection fraction, global longitudinal strain, and other global metrics have been useful in the assessment of overall 

LV function, but fail to provide information on the regional health of the myocardium. Additionally, significant 

reduction in global function metrics appear only in advanced disease stages whereas regional dysfunction often precedes 

global dysfunction. 

 

The current gold-standard for the non-invasive assessment of regional LV function is cardiovascular magnetic resonance 

(CMR) tagging7–10. However, CMR requires long breath holds, acquisition over multiple heart beats, and manual 

contouring7,11. The growing number of patients with metallic medical device implants further limits the clinical use of 

CMR. 

 

Recent advances in x-ray computed tomography (CT) have made possible the functional imaging of an entire cardiac 

cycle within a single heartbeat12–16, while a static 3D image of the heart can be acquired in scan times of ~140ms. 

Additionally, the high spatial resolution of CT has made possible the detection and tracking of the fine LV endocardial 

texture comprising of trabeculae carneae17. 

 

SQUEEZ17 is a new method introduced to measure regional endocardial function from 4D cine CT images acquired as 

per routine clinical protocols. SQUEEZ exploits the high fidelity of x-ray CT to track features of the endocardium, which 

are used by a non-rigid point set registration technique18 to derive displacements of points on the endocardium across the 

cardiac cycle. This displacement estimate is used to obtain information on the regional strain of the endocardium. 

SQUEEZ has been shown to be capable of differentiating normal from dysfunctional myocardial regions in pigs17, has 

been validated against CMR tagging in canines19, and more recently, baseline estimates of SQUEEZ values in the normal 

functioning human LV were established20. 

 

The goal of this research was to establish an analytically derived LV systolic model which can serve as the ground-truth 

in validating and quantifying the accuracy of SQUEEZ for human hearts. Validating regional strain measures in humans 

is a difficult task as each imaging modality has inherent limitations, ranging from operator variability to through-plane 

motion, and hence the measurements maybe subject to modality-specific biases. Using the model described here, we aim 

to perform the first analytical evaluation of SQUEEZ in human hearts, as well as to fine tune the parameters of the 

registration algorithm to achieve optimal registration between the different poses of the LV across the cardiac cycle. 

 

 

2. METHODS 

 
2.1 Image Acquisition 

The end-diastolic phase of a human cardiac CT scan was used as the baseline image for the development of the analytic 

phantom. The image was acquired under IRB approved protocols using a 320 detector-row (Aquilion ONE, Canon 

Medical Systems, Otawara, Japan) scanner at the National Institutes of Health (Bethesda, Maryland). Optimal 

opacification from contrast dye was achieved using real-time bolus tracking. 

 

The signal-to-noise ratio (SNR) of the LV blood pool was estimated as the ratio of the mean of the Hounsfield units 

(HU) to the standard deviation, within a user defined region of interest (ROI). The HU within the ROI was 810  44, 

giving an SNR of 18.4. 

 

The image was reconstructed into a matrix of 512 x 512 x 320 voxels using the manufacturer’s (Canon Medical Systems) 

standard reconstruction algorithm, as implemented by the clinic. The image had a resolution of 0.339 mm x 0.339 mm x 

0.50 mm in the x, y, and z directions respectively. 
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2.2 Image Processing & Mesh Extraction 

The LV was segmented with ITK-SNAP21 using the active contour region growing module (thresholding type = high 

pass; threshold = 450; smoothness = 10; seed radius = 5; all other parameters were set as default). All further processing 

steps were performed in MATLAB (MathWorks Inc.). 

 

The binary LV segmentation was loaded into MATLAB in its native orientation and resolution. Prior to extracting the 

mesh, the LV binary volume was resampled to an isotropic resolution of 0.5 x 0.5 x 0.5 mm3 through linear interpolation. 

The isotropic binary volume was rotated sequentially about the x and y axes, so that the LV long axis coincided with the 

z axis. The LV was cropped a few voxels below the mitral valve plane to obtain the mesh as an ‘open’ cone without a 

‘lid’. 

 

The next step involved the removal of the papillary muscles. In short-axis slices, the papillary muscles appear as holes in 

an otherwise uniform ‘circular’ binary volume. In some cases, the papillary muscles form ‘open holes’, and filling such 

features is not trivial. To circumvent this problem, the binary LV blood pool was dilated using a 3x3x3 kernel. Each 

short-axis slice was extracted and the imfill in-built MATLAB routine was used to fill any holes that may be present in 

the slice. After filling in the papillary muscles, the binary LV was eroded back to its original state using the same 3x3x3 

kernel. This process did not significantly alter the features on the mesh. 

 

The binary LV volume was subsampled to a resolution of 2 mm x 2mm x 2mm by retaining every fourth (2mm/0.5mm) 

voxel in x, y, and z directions to make it consistent with previously published SQUEEZ analyses17,19,20,22. A mesh of the 

LV blood pool was extracted using the isosurface in-built MATLAB routine. The mesh comprised of 5257 faces and 

2882 vertices. A summary of the process is shown in Fig. 1A-C. 

 

 
Fig. 1. Image processing and mesh extraction. (A) Axial slice of the CT image. (B) Axial slice with the LV blood volume 

segmentation overlaid. (C) 3-D rendering of the extracted LV endocardial mesh, looking at the free wall. 

 

2.3 Strain Model 

The end-diastolic mesh, obtained from the LV segmentation as described above, was warped to an end-systolic pose by 

prescribing a strain model on every vertex of the point cloud. The strain model comprised of three primary components: 

1. Longitudinal strain (ll) 

2. Circumferential strain (cc) 

3. Azimuthal rotation () 

Azimuthal rotation is not a strain but represents the rotation of the LV endocardium during systole. For convenience, we 

will refer to it as the third component of the strain model. The ejection fraction of the model was 70%, which is 

consistent with CT based LV ejection fractions measured in normal hearts20. Fig. 2 shows the peak systolic values of the 

three components of the strain model as a function of the long axis of the LV. 
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2.3.1 Longitudinal strain 

Longitudinal strain (ll) was modeled as a constant value for every point in the LV. The value of peak end-systolic ll was 

set to -21%23 and prescribed to the point cloud according to the following equation 

 𝑧𝑖
′ = 𝑧𝑖−1

′ + (1 + 𝜖𝑙𝑙) ∗ (𝑧𝑖 − 𝑧𝑖−1)      (1) 

where z is the coordinate in the z direction, i = 1,2,3,…,N is the slice number from apex to base, and z’ is the new z 

coordinate. In this model, the terminal apical slice was fixed and all slices above compressed down towards the apex by 

the prescribed strain value. 

 

2.3.2 Circumferential strain 

Circumferential strain (cc) was modeled as a linear reduction in strain from -44% at the apex to -34% at the base at end-

systole23. The (x,y) coordinates were converted to polar coordinates (r,), with the centroid (center of LV mass) used as 

the center. The model was prescribed to the point cloud according to the equation 

     𝑟𝑖
′ = 𝑟𝑖 ∗ (1 + 𝜖𝑐𝑐𝑖

)      (2) 

where r is the radial coordinate, i = 1,2,3,…,N is the slice number from apex to base, and r’ is the new r coordinate. 

 

2.3.3 Azimuthal rotation 

Azimuthal rotation () was modeled as a linear decrease24 in rotation from apex to base, with peak end-systolic rotation 

of 13 in the counter clockwise direction at the apex and 6.9 in the clockwise direction at the base, when viewed from 

apex to base25. As with cc, the rotation model was prescribed to the point cloud in polar coordinates according to the 

following equation 

      𝜃𝑖
′ = 𝜃𝑖 + 𝛥𝜃𝑖      (3) 

where  refers to the azimuthal angle, i = 1,2,3,…,N is the slice number from apex to base, and ’ is the new azimuthal 

angle. 

 

 
Fig 2. Components of the systolic strain model as a function of position along the LV long axis from apex (position 0) to base 

(position 1). (A) Peak systolic longitudinal (ll, blue) and circumferential (cc, red) strain functions as a function of LV long axis (B) 

Peak systolic LV rotation as a function of LV long axis (positive rotation is counter-clockwise when viewed from apex looking up 

towards the base). 

 

2.3.4 Regional dysfunction model 

Regional dysfunction was incorporated into the above strain model by prescribing a reduction factor in the ll and the cc 

components over a particular region of interest. The dysfunction model required three user input parameters:  

1) Coordinates of the center of dysfunctional region 

2) Diameter (size) of dysfunctional region 

3) Severity of dysfunction (reduction factor in strain) 

To ensure continuity of the LV tissue, a Gaussian function was imposed to ensure a smooth transition radially outward 

from the center (where severity is maximum) to the normal tissue. Four sizes of dysfunctional regions were simulated, 

A B
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and each size was labeled as the full width at half the maximum reduction in strain of the Gaussian function. 

Additionally, each size was modeled with a severe, a medium, and a subtle reduction in strain. The values of strain 

reduction for each size was chosen through a visual inspection of meshes for physiological relevance. Table 1 

summarizes the severities modeled for the different sizes. 

 
Table 1: Severity of dysfunction for each size of dysfunction 

Diameter 

(mm) 

Severity (% reduction in normal strain) 

Severe Medium Subtle 

17.5 70 50 30 

14 60 45 30 

10.5 50 40 30 

7 40 35 30 

 

2.3.5 Texture smoothing 

To mimic the end-systolic pose of the ventricle more accurately, a low-pass filter was applied on the point cloud through 

the iso2mesh26 MATLAB toolbox (method = ‘lowpass’; iterations = 4; alpha = 0.4). This was motivated by the change in 

LV endocardial texture during systolic contraction27 due to collapsing spaces between trabeculae coupled with spatial 

resolution limitations of the scanner. The filter is a Laplace filter applied in two steps; a forward (smoothing) step (eqn. 

4) and a backward (volume conserving) step (eqn. 5) according to the following series of equations28 

 

   𝑝′ = 𝑝 + 𝛼 ∑ 𝜙(𝑞𝑖  – 𝑝)𝑛
𝑖=1 ;                0 < 𝛼 < 1, 𝜙 =

1

𝑛
           (4) 

   𝑝′′ = 𝑝′ + 𝜇 ∑ 𝜙(𝑞𝑖  – 𝑝)𝑛
𝑖=1 ;              𝜇 =  −1.02 ∗ 𝛼, 𝜙 =

1

𝑛
           (5) 

 

where p, p’, and p’’ are the original, intermediate, and final positions of a vertex p and i = 1,2,3,…,n is the index number 

of the n neighboring vertices q. Fig. 3 shows the end-diastolic (Fig. 3A) and the end-systolic poses under both normal 

(Fig. 3B) and regional dysfunction (Fig. 3C) conditions. 

 

 
Fig. 3. End-diastolic and end-systolic poses. (A) End-diastolic mesh derived from human clinical CT data. (B) Analytically derived 

end-systolic pose with normal function. (C) Analytically derived end-systolic pose exhibiting regional hypokinesia of diameter 

17.5mm at the mid-anterior segment of the LV with preserved ejection fraction in all other segments. 

 

2.4 Non-rigid Point Set Registration 

Coherent Point Drift (CPD), a probabilistic non-rigid point set registration technique18, was used to register the end-

diastolic template mesh to the end-systolic target mesh. Since our model had a perfect 1:1 correspondence, the 

registration accuracy can be validated with the known ground-truth. However, in the clinical scenario, a 1:1 

correspondence does not exist between the end-diastolic and the end-systolic point clouds. From 10 normal human LV 

B CA
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scans, the ratio of the number of vertices at end-systole to end-diastole was calculated to be (mean  SD) 46%  7%, and 

therefore, only 50% of the vertices in our analytically derived end-systolic pose were retained. 

 

Additionally, a uniform distribution of random noise in the range of 0.3 pixels was added to the coordinates (x,y,z) of 

the down-sampled end-systolic pose to decrease the overall coherence of mesh point displacement. The limits of the 

added noise were determined by calculating the pixel spacing (mean  SD, 0.5  0.3) between vertices in the analytically 

derived end-systolic mesh. This down-sampled and perturbed end-systolic pose was used as the target for the registration 

of the template end-diastolic mesh by CPD. 

 

2.4.1 Identification of optimal set of CPD parameters 

The registration accuracy of the CPD algorithm depends on 3 user input parameters: , , and .  is the width of the 

Gaussian smoothing kernel,  is the regularization weight, and  parameterizes the amount of noise and expected 

outliers in the system18. Both  and  define the coherence of motion between neighboring points; an increase in either 

value, forces the points to move in a more coherent manner, while lower values allow for more localized deformations. 

 

For our application, we need the registration algorithm to balance between coherent and localized motions. The warping 

of the template end-diastolic mesh to the target end-systolic mesh must be performed in a physiologically accurate 

manner (coherent motion), while still being able to capture regional abnormalities in cardiac contraction (localized 

changes in the expected motions). From visual inspection trials, we identified that  values between [0.7,2] in steps of 

0.1, and  values between [1,15] in steps of 1 cover the domain of values of interest. We estimated that 1%, 5%, 10%, 

and 20% outliers should span the range of possible outlier fractions () that occur in the clinically derived LV meshes. 

The above identified ranges for , , and  created 840 (14 x 15 x 4) sets of possible parameters for the registration 

algorithm. From these 840, we sought to identify one set of parameters which yielded the best (defined in section 2.4.2) 

registration between end-diastole and end-systole under both, normal and regional dysfunction (14mm & severe; refer to 

Table 1.) conditions. The 14mm severe regional dysfunction model was chosen based on two factors: 1) From visual 

inspection of wall motion abnormalities seen on cine CT images, this seemed to be a reasonable average size for the 

optimization of the registration algorithm and 2) by optimizing for the most severe case of regional dysfunction, the 

registration fit would also be better capable of capturing subtle abnormalities. Furthermore, the registration algorithm 

may try to treat the severe dysfunction as an outlier due to the coherence seen elsewhere in the mesh. 

 

2.4.2 Statistical evaluation 

The accuracy and quality of the registration fit was assessed based on four metrics: 

1) Global l2 norm: 

The global l2 norm was computed for all vertices of the LV according to the formula 

   𝑙𝑔𝑙𝑜
2 =  

1

𝑁
√∑ (𝑥𝑖

𝑜 – 𝑥𝑖)
2 + (𝑦𝑖

𝑜  –  𝑦𝑖)2 + (𝑧𝑖
𝑜  – 𝑧𝑖)

2𝑁
𝑖=1             (6) 

where (xo, yo, zo) are the coordinates of the ground-truth vertex at index i, (x, y, z) are the coordinates of the 

corresponding registered vertex, and i = 1,2,3,…,2662(N) is the vertex index.  

2) Regional l2 norm: 

The regional l2 norm was computed over the vertices of the dysfunctional region of the LV according to the 

formula 

   𝑙𝑟𝑒𝑔
2 =  

1

𝑛
√∑ (𝑥𝑖

𝑜 – 𝑥𝑖)
2 + (𝑦𝑖

𝑜  –  𝑦𝑖)2 + (𝑧𝑖
𝑜 – 𝑧𝑖)

2𝑛
𝑖=1             (7) 

where (xo, yo, zo) are the coordinates of the ground-truth vertex at index i, (x, y, z) are the coordinates of the 

corresponding registered vertex, and i = 1,2,3,…,319(n) is the vertex index. 

 

3) Euclidean distance: 

Unlike the l2 norm which gives us an average measure of goodness of fit for all points in question, Euclidean 

distance was computed on a vertex by vertex basis according to the formula 

  𝑑𝑖𝑠𝑡𝑖 =  √(𝑥𝑖
𝑜 – 𝑥𝑖)2 + (𝑦𝑖

𝑜  –  𝑦𝑖)2 + (𝑧𝑖
𝑜 – 𝑧𝑖)

2            (8) 

where (xo, yo, zo) are the coordinates of the ground-truth vertex at index i, (x, y, z) are the coordinates of the 

corresponding registered vertex, and i = 1,2,3,…,2662(N) is the vertex index. 
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4) SQUEEZ: 

SQUEEZ (S) is a measure of geometric strain of the endocardium at any given time t of the cardiac cycle17, 

computed according to the formula 

     𝑆 =  √
𝐴(𝑣,𝑡)

𝐴(𝑣,0)
             (9) 

where A refers to the area of a triangular mesh element v, and t is the time frame of the cardiac cycle, t=0 

referring to end-diastole. The area A of each triangular element v was calculated as an average area over all 

elements that shared one or more vertices with the element v. Additionally, from a cohort of 25 humans with 

normal LV function, McVeigh et al. determined the peak systolic SQUEEZ value to be 0.66  0.0520. 

 

Among the 840 sets of parameters, only those that satisfied the following inclusion conditions were shortlisted: 

1) Global l2 norm under normal contraction ≤ 0.015 (bottom 90% of all l2 norms; errors were consistently low) 

2) Regional l2 norm over dysfunctional vertices in the dysfunctional case ≤ 0.05 (bottom 30% of all l2 norms) 

3) 95% of SQUEEZ values under normal contraction to be within 0.0520 from the ground-truth 

4) 90% of vertices under normal contraction to be within  1px. from the ground truth 

5) 90% of vertices in the dysfunctional case to be within  1px. from the ground-truth 

6) SQUEEZ value of all 16 AHA segments under normal contraction to be within 0.0520 from the ground-truth 

7) SQUEEZ value of 15 AHA segments (excluding AHA segment 7; the mid-anterior segment containing the 

programed region of dysfunction) in the dysfunctional case to be within 0.0520 from the ground-truth 

8) SQUEEZ value of AHA segment 7 in the dysfunctional case ≥ 0.75 (ground-truth value = 0.81). 

 

2.5 Quantifying Accuracy of Detection of Regional Dysfunction 

Four different sizes of dysfunctional regions, each modeled with a severe, a medium, and a subtle reduction from normal 

strain (see Table 1.) were used to quantify the accuracy of detection of regional dysfunction using CPD and SQUEEZ. 

The optimal set of CPD parameters, as determined from section 2.4.2, was used and the target end-systolic point clouds 

for each size and severity were prepared in the manner outlined in section 2.4 (down-sampled and perturbed). 

 

The mean and standard deviation of the SQUEEZ values within the dysfunctional region were calculated for both the 

ground-truth and the registered meshes. Additionally, to understand the correlation between the ground-truth and the 

registered values, the mean and standard deviation of the differences in SQUEEZ were also calculated. 

 

 

3. RESULTS 
 

The results are presented under three sections: 1) Identifying the optimal set of parameters for CPD registration, 2) 

Quantifying accuracy of detection of various sizes and severities of regional dysfunction, and 3) Stability in 

measurements as a function of simulated noise. 

 

3.1 Optimal Set of Parameters for CPD Registration 

From the 840 sets of parameters, only 45 sets of parameters satisfied the 8 error constraints listed out in section 2.4.2. 

Fig. 4 shows the values of , , and  that satisfied all 8 constraints.  values between 0.9 and 1.3 satisfied the 

constraints; high values of  impose strong coherence of motion and hence, regional displacements (hypokinetic/infarct 

regions) are compromised while on the other hand, very low values of  lead to hyper-flexible meshes. The values of  

ranged from 6 to 15, the limit of our parameter search for . A strong inter-dependency between  and  was also 

observed in Fig. 4; as the value of the width of the Gaussian smoothing kernel () decreased, to maintain the overall 

quality of the mesh (coherence of point displacements), the regularization weight () had to increase. The other 

interesting observation was that the outlier weight  does not alter the quality of the registration fit significantly. This 

made sense intuitively since our simulation was devoid of outliers. 
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Fig. 4.  and  values as a function of  . Since our simulation was outlier free, the value of  had no significant effect on the 

registration fit.  and  show an inversely dependent relationship to maintain accuracy as well as coherence. 

 

All 45 sets of parameters quantitatively performed well, satisfying the 8 established inclusion conditions. From a 

stability standpoint, we chose the middle set of =1.1 and =11 as the operating point. Fig. 5 shows a difference map of 

SQUEEZ values between the theoretical and the registered meshes (theoretical – registered) under normal and regional 

dysfunction cases for the extreme (Fig. 5A and 5C) and the middle sets (Fig. 5B) of  and  values as seen in Fig. 4. 

Neither of the meshes registered with the upper nor the lower limits of  and  values looked significantly different from 

the mesh registered with the chosen middle set of  and  values. With respect to the outlier weight, we made an 

educated estimate that a value of  = 0.05 is the most clinically relevant. We also hypothesize that the outlier weight will 

have significance in the detection of very small localized regions of dysfunction, the size of which is comparable to the 

outlier percentage set in the registration algorithm. 
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Fig. 5. Difference maps of SQUEEZ values between the theoretical and the CPD registered (theoretical – CPD) values for both 

normal (left column) and regional dysfunction (right column) cases (A) Registration performed with the upper extreme set of  

and  values as seen in Fig. 4. (B) Registration performed with the selected “operating point” of  and  values as seen in Fig. 4. (C) 

Registration performed with the lower extreme set of  and  values as seen in Fig. 4. 

 

3.2 Accuracy of Detection of Regional Dysfunction 

Four sizes of regional dysfunction were simulated with each size exhibiting a severe, a medium, and a subtle dysfunction 

(Table 1.). Fig. 6 shows the anterior wall of the LV for all 12 combinations (4 sizes x 3 degrees of severity) of the 

simulated dysfunction with the SQUEEZ values mapped onto the surface of the mesh. Panels A, B, and C show severe, 

medium, and subtle dysfunction respectively for the four different sizes. As a reminder, a high SQUEEZ value indicates 

low strain, while a low SQUEEZ value indicates good contraction. Similarly, Fig. 7 shows the CPD registered meshes 

with the corresponding SQUEEZ values mapped onto the surface of the mesh. 
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Fig. 6. Analytically derived end-systolic LV poses mapped with regional SQUEEZ values. (A) Severe dysfunction for each of the 

4 different sizes of dysfunction. (B) Medium dysfunction for each of the 4 different sizes of dysfunction. (C) Subtle dysfunction for 

each of the 4 different sizes of dysfunction. Each image shows the anterior wall of the LV with the colors corresponding to the local 

SQUEEZ values. 

 

 
Fig. 7. CPD registered end-systolic LV poses mapped with regional SQUEEZ values. (A) Severe dysfunction for each of the 4 

different sizes of dysfunction. (B) Medium dysfunction for each of the 4 different sizes of dysfunction. (C) Subtle dysfunction for 

each of the 4 different sizes of dysfunction. Each image shows the anterior wall of the LV with the colors corresponding to the local 

SQUEEZ values. 
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As seen by comparing Fig. 6 and 7, very localized and subtle abnormalities are underestimated. This was due to the 

emphasis on coherence of motion in the registration algorithm. A dysfunctional region of 7mm in diameter contained 25 

vertices in a point cloud of 2662 vertices, which constituted for approximately 1% of the total number of vertices. This 

value was less than the outlier weight we used for the registration process. Acknowledging the fact that outliers will exist 

in the clinical cases, we need to identify a method by which we can accurately estimate the number of outliers on a case 

by case basis and secondly, explore the registration options further to accurately capture very small and localized regions 

of dysfunction like the 7mm case. 

 

Fig. 8 quantifies the differences between the theoretical (in blue) and the CPD registered (in red) SQUEEZ values within 

the region of dysfunction. Fig. 8A-C show boxplots (bottom and top edges of the box correspond to the 25th and 75th 

percentiles and the central line indicates the median) of the distribution of SQUEEZ values within the dysfunctional 

region and Fig. 8D-F plot the mean difference between corresponding SQUEEZ values as a function of size with the 

error bars indicating to  one standard deviation. While all three severities of dysfunction are accurately captured in the 

17.5mm case, the severity of dysfunction is progressively underestimated as the size decreases. It is worth mentioning 

that small regions of dysfunction of size 7 and 10.5mm diameter are rarely detected by any current method in the clinical 

setting, however, as part of future work, we will need to further explore the registration options to accurately quantify 

even extremely localized and subtle wall motion abnormalities. 

 

 
Fig. 8. Accuracy of detection of regional dysfunction through CPD and SQUEEZ. (A-C) Boxplots (lower and upper edge of the 

box correspond to the 25th and 75th percentile with the central mark indicating the median of the distribution of the theoretical (in blue) 

and the CPD registered (in red) SQUEEZ values within the region of dysfunction for (A) severe, (B) medium, and (C) subtle 

dysfunctions. (D-F) Error-bars of the mean difference (with  one standard deviation) between the theoretical and the CPD registered 

SQUEEZ values within the region of dysfunction for (D) severe, (E) medium, and (F) subtle dysfunctions. 
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4. DISCUSSION 
 

This manuscript presents a LV systolic model derived from human cardiac CT data prescribed with physiologically 

relevant strain functions23–25 to create analytically known systolic poses. This is the first known LV point cloud model 

with programmable dysfunctional regions and the first analytical evaluation of SQUEEZ17. Additionally, the model 

makes it possible to 3D print the analytically derived systolic phases of the cardiac cycle and image them under different 

scanning conditions to understand the implications on LV function assessment using CT. In addition to the assessment of 

function, the model also provides a platform to investigate the assessment of other LV phenomena such as dyssynchrony 

and twist. 

 

Using a model for normal LV function and a model for regional dysfunction of moderate size and severity, the most 

optimal set of parameters for the CPD18 registration algorithm were identified. This was the first attempt at identifying 

the optimal set of parameters for the quantification of human regional LV function using SQUEEZ. With these 

parameters, the accuracy of detecting programmed dysfunctional regions using the CPD and SQUEEZ pipeline was 

quantified. The accuracy decreased as a function of decreasing size, with almost perfect detection for the region of 

diameter 17.5mm and severe underestimation of dysfunction for the very small dysfunctional region of 7mm in diameter. 

 

While the spatial resolution of detecting regional dysfunction was established, future work is necessary to improve the 

accuracy to enable the detection of very small localized regions of dysfunction. Additionally, the effect of spatial 

resolution on the accuracy of point-cloud registration and SQUEEZ needs to be investigated. 

 
4.1 Limitations 

While the model served as a ground-truth in the validation and fine-tuning of the CPD and SQUEEZ pipeline of 

measuring regional LV function, it does not accurately represent the texture change of the human LV during systolic 

contraction. Although a low-pass filter was applied to break feature correspondence, human LV systolic contraction 

loses features in a non-coherent fashion. 

 

Currently, regional dysfunction is modeled in a circular pattern, with the most severe dysfunction at the center and a 

gradual tapering off towards normal function radially outward. The model is limited by its symmetric shape; regional 

dysfunction occurs in various shapes, often in a non-isotropic manner. The accuracy of detection of regional dysfunction 

with non-isotropic spatial scales in x, y, and z needs to be investigated. 

 

While the model offers a great deal of flexibility in programming regional dysfunction, it is currently limited by the fact 

that it does not incorporate an accurate model of CT noise in the independent phases of LV contraction. Future work 

should address the effects of increasing CT noise (with reduced patient dose) and outliers on the computed SQUEEZ 

values. 
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